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ABSTRACT 

A variation in  the form of a rectangular pulse of short duration, 

is introduced into the singular control function. 

Differential Dynamic Programming is  used to obtain a n  expression 

for the change in  cost produced by the control variation, and a new 

necessary condition of optimality is  deduced by requiring that this 

change in cost be non-negative. 

a r e  present the control variation takes the form of a rectangular pulse 

followed by a 'special variation' which is chosen to keep the terminal 

equality constraints satisfied to f i rs t -order .  

a r e  used to illustrate the non-equivalence of the new necessary condition 

and the generalized Legendre-Clebsch condition. 

The technique of 

When terminal equality constraints 

Simple control problems 



1. Introduction 

Necessary conditions of optimality for  non-singular, unconstrained, 

control problems a r e  well known. When control and state variable con- 

straints a r e  present, the situation is more complex, but recent research 

[1]-[7] indicates that many of the subtleties of this class of problems a r e  

now uncovered. In the classical  Calculus of Variations literature, little 

space is devoted to the analysis of singular variational problems. Re- 

cently, interest has been aroused in  singular optimal control problems 

[8]-[19]$, owing to the appearance of such problems in, for example, the 

aerospace field and the chemical industry. Kelley discovered [20], and 

Robbins [21], Tait [22] and Kelley et a1 [23] generalized, a new necessary 

condition of optimality for singular a r c s .  

generalized Legendre-Clebsch condition, has, in a number of cases,  

proved useful [16], [18], [23] in  eliminating some stationary a r c s  from 

the class of candidate a r c s  for minimizing solutions. The generalized 

Legendre-Clebsch condition is  proved using special control variations. 

In this paper, by the use of a different special control variation, an addi- 

tional necessary condition of optimality is derived. The Differential 

Dynamic Programming approach, outlined in [7], [24]-[26], is used to 

calculate the expression for the change in  cost produced by the introduction 

of the special variation. The new necessary condition is deduced from this 

expression. Control problems without terminal constraints a r e  considered 

first. 

The condition, known as the 

For  this class of problems, the special control variation is a 

Many additional references a r e  given in [ I l l ,  [21] and [23]. 

Some control problems a r e  described which illustrate the necessity of 
the new condition in  cases  where the generalized Legendre-Clebsch 
condition is satisfied. 
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rectangular pulse. With terminal constraints present, the rectangular 

pulse is followed by a control variation which is designed to keep the 

terminal constraints satisfied to first-order.  

2. Preliminaries 

Consider the class of control problems where the dynamical system 

i s  described by the differential equations: 

j, = f(x,u, t )  j x(t ) = x (1  1 

f(x, u, t )  = f1(x, t )  f fu(x, t)u 0 

0 0 

where 

(2) 

The performance of the system i s  measured by the cost functional 

and the terminal state must satisfy 

The control u is required to satisfy the constraint 

Here, x i s  an  n-dimensional state vector, and u is a scalar control. 

and f a r e  n-dimensional vector functions of x a t  time t ,  and L and F a r e  

scalar functions. 

a t  t 

f, L and F are assumed to be three times continuously differentiable in 

f l  

U 

30 is an  s-dimensional column vector function of x(tf) 

The final time i s  assumed to  be given explicitly. The functions f ’  

each argument. 

The control problem is: determine the control function u(- ) to 

In general the optimal 
0’ to) satisfy (5) and (4) and minimize the cost V(x  

control function u( ) will  consist of bang-bang sub-arcs and singular 
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sub-arcs.S A bang-bang a r c  is one 

(5), except at a finite number of 'switch 

s ig  ingu 

It can be shown, for the case where termin 

that along a singular a r c  the following necessary 

hold: 
- - - -  - 

-v X = €3 X (x,u, Vx,t) j VX(tf) = FXG(t f ) , t f )  ( 4 )  
- -  

Hub,  vx, t )  = 0 

Wx, u, vx, t) = L(x, t )  -I- ox, f(x, u, t)> 

(7) 

where 

(8 ) 

and :( ), ;( * ) denote the candidate state and control functions. 

derivative V (x, t )  is the f i rs t  partial  derivative* of v - -  the cost produced 

by the control function ;(- ). 

adjoint variable. Note that 

optimal cost  Vo which i s  obtained when optimal feedback control i s  used. 

The 
- -  

X 

Here, can be identified with Pontryagin's 

i s  not the f i rs t  partial  derivative V z  of the 

X 

x -  

Along a singular a r c ,  Kelley et a1 [ Z O ] ,  Robbins [21] and Tait [22] 

prove that an  additional necessary condition of optimality is: 
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in  a Taylor ser ies  about T, t: 

t higher-order terms (1 0 )  

The partial  derivatives in (10) a r e  obtained by changing x but keeping the 

control function fixed V(2, t )  - -  the cost to go from t to tf 

when starting in state z(t) and using controls ;(a ) t 6u(- ) - -  can be written 

t at ;(a) t hi(-). 

as 

(11) 
-- v(;, t) = ~ ( x ,  t) t a(;, t) 

d 

where .d(x,,tl is the change in cost, when starting at time t in  state x(t), 

produced by the variation 6u(r), r E [t, tf]. 

Using (11) in (10): 
-- 1 v(G t 6x, t) = ~ ( x ,  t) t a(;, t) t <v,(;, t), 6x) t z<6x, vXx(X, t)6x> 

t higher-order tezms . (12) 

From (3) it is clear that 

v(; t ax, t) = -L(G t 6x, t )  



Substituting (12)  into (14) and expanding L and f in Taylor se r ies  about 2, 

we obtain: 

xx av 
6x> t higher-order te rms  = 1 av aT aa 

a t  at - <*, sx> - 2<6x, at -- - -  

- -  
H(x,u t ~ u , V  , t )  t (H + V f,  6x) X X xx 

f )  6x> t ~ < 6 x ,  1 (Hxx t fTV t Vxxfx t Zf 1 T  Vxxx t zVxxx 1 x xx 

t higher-order te rms  . ( 1  5) 
- -  

All derivatives in (1 5) a r e  evaluated at  x, u t 6u, V t .  
X’ 

Since equality holds for  all 6x, we equate coefficients to obtain: 
- - -  

= H(x, u t 6u, Vx, t )  av aa 
at at 

-- - -  

av - -  - -  
-c_ X = Hx(x,u t 6u,Vx, t )  t V f(x,u t 6u,t)  at xx 

- -  T - -  - -  
Hxx(x, u t 6u, V t )  t f, (x, u t 6u, t)Vxx t V f (x, u t 6u, t )  xx av 

--= 
at X’ xx x 

- -  1 T - -  f(x, u t 6u, t )  t Zf (x, u t 6u, t)V 
P X X X  xxx 
1 

The higher-order equations a r e  not presented. 

Now, 

- -  
4- <v,, f(x, u, t)> 

d -  d av 
dt at z ( V  t a) = -V = - 

Therefor e, 

and 
- -  

t v f(x,u, t )  X 
av 

v = -  
x a t  xx 

- 5- 



Using (17) in (16), the following equations result: 
- -  

(18) 

- & = H -  H(x,u,V X’ t) 

- -  
-V = H t V (f - f (x ,u, t ) )  

-+ = H t fTV t V f t ZVxxx(f - f(x,u,t))  

X X xx 
- -  1 

xx xx x xx xx x 

T - -  1 
-I- $f - f(x, u, t ) )  vxxx 

- -  
where, unless otherwise specified, all quantities a r e  evaluated a t  x, u t 6u, 

V t. Using thespecial  structure of f,  Eq. (2), equations (18) become: 
X’ 

-& = H 6u 
U 

-V = H x  t (H t V  f )6u 
X xu xx u 

xxu -+ = H  t f T V  t V  f t ( H  xx xx x xx xx x 

t ZV 1 f t ~ f U V X X X ) 6 U  1 T  xxx u 

In (19), all quantities a r e  now evaluated a t  x, 
. for Eqs. (19) are ,  clearly, 

a(tf)  = 0 

(19) 1 t f T V  f V  f xu xx xx xu 

- 
u, Vx, t. Boundary conditions 

The change in cost owing to the presence of a control variation ~ u ( T ) ;  

T $: [tl, t2], t2 > tl, i s  given by 

a( t l )  = a(t ) t f lL(t)dt  

2 

5. New Necessary Condition: Unconstrained Terminal State 

A singular a r c  is assumed to lie in an  interval [t t ] a’ b . A control 

variation in the form of a rectangular pulse of height q and duration T is 

introduced i n  an interval [tl, t2] where: 
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t < t .  < t b  ; i = l , 2  t > t  a i  ' 2  1 

6 4 t )  

n l l  I 

T 
4--b 

A l-t 

Figure 1 

The change in cost produced by this variation i s  given by 

a d t  t a ( t2 )  = 4 -HU6udt t a( t2)  
12 

where H i s  evaluated a t  x, V t .  Expanding the integral in a Taylor 

se r ies  in T, the expression fo r  the change in cost becomes: 

U X) 

I d  2 
T t . e t a( t2)  . 

t2  

At time t2, one has 

a( t2)  = 0 

where Yx(t2) and Vxx(t2) a r e  computed using (19) and (20) with 6u(t) = 0, 

t It2,tfl. 

t Note that in (24) quantities a r e  evaluated a t  the time instant immediately 
pr ior  to t ime t2. 
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- -  
Since x( t2)  i s  on the singular a r c ,  HU(x, Vx, t2 )  = 0. Thus, the 

2 f i rs t  non-zero te rm in expansion (24) is the T one. We have that: 

' t2 

From (19), (201, 

(27)  
- 'T T 

Hub, vx, t) 1 = ifu vx i- fu [-Hx - (Hxu i- VXXfU)~11 I * 

t2  t2 

The f i rs t  two te rms  in  (27)  sum to zero. Using (27) and (26) in (24), the 

change in cost is 

t higher-order te rms  . (28) 

For  the singular a r c  to be a condidate as a minimizing arc ,  i t  i s  necessary 

that the change in cost, owing to the presence of the control variation, be 

non-negative. From (28) this implies that 

whe r e  
- - -  

-V = Hx(x, u, Vx, t) X 

\ and 

Inequality (29) i s  the new necessary condition of optimality for singular 

control problems with unconstrained te rminal states . 
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6. Examples 

- 1. Consider the following scalar control problem: 

j ,  = u j x(0) = 1 

The optimal control is 
- 
u(t) = -1 t e [o, 11 

u(t) = 0 ~ t E (1 '21 
- 

The a r c  in x, t space along which u(t) is zero, is  singular. 

Fo r  the above problem we have that 
2 

H(x,u, V t )  = x t V u 
X' X 

Hub,  vx, t )  = v X 

- - - -v  = 2x ; VX(tf) = 0 
X 

- - -v = 2  j v ( t ) = O  xx xx f 

and .. 

whence 

so that the generalized Legendre-Clebsch condition is  satisfied. 

It i s  clear that 

f,'(Hxu t 'if xx f u ) = xx 

(32) 

(33)  
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and from (36) 
- 
VXX(7) = 27 

where 

From (40), 

so that the new necessary condition is satisfied. 

Let us consider now the following cost functional 
2 

2 
V(1, 0 )  = x dt - Sx (tf)  s 2  0 (43) 

where S is positifve. The control program (34) is a stationary solution for 

this cost functional because the first-order necessary conditions of 

optimality a r e  satisfied. Moreover, the generalized Legendre-Clebsch 

condition is satisfied. However, the differential equation for is 
xx 

- - -v = 2 j VXX(tf) = -s xx 

and hence 
- 
VXX(7) = -s t 27 . 

(44) 

(45) 

Since S i s  positive, the new necessary condition i s  violated for 7 sufficiently 

small. 1 It can be verified directly that, for S > 7 a control function 
\ 

u(t) = -1  , t Q [o, 11 

u(t) = Q , t Q (1 ,2]  
} (46) 

lower than that resulting from the use of the control p r  

the -0ptimality of that control program. 



1uI 1 (49) 

Here, 
- - -v - - x1 x1 

- 
; v (tf) = 0 

x1 
- - - -v = x 2  t T  j v (tf) = 0 

x2 x1 x2 

} (50) 

and 

H = V  
x2 U 

H = -x2 - V 
x1 U 

.. 
x1 

H = - u -  
U 

so that the generalized Legendre-Clebsch condition i s  satisfied. The 

, and T expression fU(Hxu t f ) is  equal to 
x2x2 xx u 

1 3  
3 

- 
(7) = T f -T V 

x2x2 

s o  that the new necessary condition is satisfied. It can be verified [ 9 ]  that 

this problem has a stationary solution which exhibits a singular a r c .  More- 

over, the stationary solution is minimizing. 

Consider now the following cost  functional: 

3r 
L 

V(Xo, 0 )  = - 2 
0 

Here, 

-xl x1 

x2 x1 

-v = 

-v = x 2  t v  

(53) 

} (54) 
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and 

H = V  
x2 U 

H = -x2 - V 
x1 U 

.. 
x1 

H = - u -  
U 

so that the generalized Legendre-Clebsch condition is satisfied. 

It i s  easy to see that 
- 
xl(t)  = s i n t  

- 
x2(t) = c o s t  

is a singular solution, and the cost functional value corresponding to this 

trajectory is .zero.  

One can verify that the equation for ?3: (7) i s  
x2x2 

1 3  
3 

- 
(7) ='7 - -7 V 

x2x2 
(57) 

which i s  negative for T >,/??: that is, the new necessary condition i s  

violated for T > p. 
(56) is, 

The control function corresponding to the trajectory 

- 
u(t) = - s i n t  . (58) 

Consider the control function 

u(t) = u(t)  t € ( 5 9 )  

where c is a constant, Then, the resulting trajectory is 
- 
x2(t) t 6x2(t) = c o s t  t E t  

- 1 2  xl(t)  t dx,(t) = s i n t  t Ze t  

The integrand in (53), corresponding to trajectory (60) is: 

2 2 . 2 4  2 2 2  -(sin t t et s i n t  t L t  ) t (cos t t ~ e t c o s t  t e t ) . 4 

} (60) 
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Using (61) in (53)’ 

2a 
2 2 2 2 t4 2 V(X0’ 0) = - 1 [cos t - sin t t e(2 tcos t  - t s in t )  t Q (-T t t )]at 2 

0 

(63) 
2 

= - 4 0 . 7 ~  

which i s  negative, confirming the non-optimality of the singular trajectory. 

The above examples illustrate the necessity of the new condition of 

optimality. 

and the generalized Legendre-Clebsch condition. 

Also demonstrated i s  the non-equivalence of the new condition 

7. Adjoining Terminal Constraint 

Here we consider the case where equality (4) is present. The 

equality constraint can be adjoined to the cost functional by a vector b 

of Lagrange multipliers, in the following way. 

::: 
v (xo,b,to) = $’L(x, t)dt + F(x(tf)’ t f )  -I- (b, IC/(x(tf), (64) 

0 

Assume that ;(. ), 

necessary conditions a r e  satisfied along a singular a rc :  

and ;(a ) a r e  stationary solutions of (64); the following 

. :k 
2; T -  - - - 2; 

-V = H (x,u,V t )  ; Vx(tf) = F (x, t f )  t IC/ X (x,tf)K 
X X X’ X 

- 4 k  
HU(x,Vx,t) = 0 . 

:* 
If V (x ,E, t ) has an unconstrained minimum with respect to u(-  ) at  u(. )’ 
the following condition must hold along the singular a r c :  

0 0 - 

-13- 



where 
- %k T-* - :;< -* 

V (t ) = F (x, tf)  t E+=(;, tf) xx xx x xx x x x  j xx f xx -V = H  t f V  + V  f 

Condition (66) follows from Section 5. 

However, failure of condition (66) does not imply that ;(* ) 9  ;(a ) is 

not a minimizing solution for the constrained problem where equality (4) 

is enforced. 

constrained problem need only be a stationary solution of (64) for fixed 

b = c. 
solution, one has to ensure that, on the introduction of a control variation, 

This is so because a minimizing solution of the original 

In order  to determine whether ;(- ), u(. ) is a possible minimizing 

equality (4) remains satisfied. 

8. New Necessary Condition: Constrained Terminal State 

Let us assume, a s  in Section 5, that a control variation consisting 

of a rectangular pulse of duration t2  - t l  f T and height 

in the singular control interval Eta, tb]. 

introduced in the interval ( tZ, tb] in order to force equality (4) to  remain 

satisfied. We shall assurne the following form for the control variation 

i s  introduced 

A further control variation is now 

in  the interval (t2, tb]: 

'u(7) = P(a)s ; 7 e (t29tb] ' (68) 

Here, P(T) is a time varying, r-dimensional row vector and u is a constant 

r-dimensional vector. For  6x and du sufficiently small, the following 

equations a r e  valid: 

where dx(t2) # 0 owing to the rectangular pulse variation prior to t,. In 

t the control constraints (5) remain satisfied when (68) is used, 

-14- 



i t  i s  assumed that ; (T ) ,  T e ( t  t ) is in the interior of the control constraint a' b 
set. i- 

The solution of Eqs. (69) i s :  

with 

@ ( T ) W  0 ' E ( tb>tf l  

where Q(t, T )  satisfies the differential equation 

At t = tf,  we require, for  6x(tf) sufficiently small, that 

+xG, tf)6X(tf) = 0 (72)  

Setting t = tf in (70) ,  and using (72) ,  we obtain 

which, by 170), is equivalent to 

Let us choose 

Using (75) in  (74), we obtain 

t If the singular control and the non-singular 'bang' control a r e  continuous 
at  tb, then (68) is used up until tb - E, E > 0 to ensure that the control 
constraints remain satisfied in  the interval ( t  t ) . 2' b 
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Denoting the contents of the square brackets on the left-hand side of (76) by 

we obtain -t 

We have, for 6x(t2) Sufficiently small, i. e. 

small, that if expressions (75) and (78) a r e  used in (68), then equality (4) 

is maintained to first-order.  
2 

order [6x(t2)] . 

for  q (or  T) sufficiently 

That i s ,  the change in 6x(t ) is a t  most of f 

- :k - 4: 
F o r  -r E (tb t ] we have the same equations for V and Vxx, namely 9 f  X 

For  a e (t2, tb] the dynamical equation i s  

(2 -k 6,)' = f(G f SX,; t pa,T) 

and the cost functional is 

-* - 
t 6x,L, a)  = L(x t 6x, t)dt t V (x t 6x,g, tb) 

a 

It i s  eaSy to show that 
controllable, and i f  

i f  the linear system 6x = f 6x 4- f 6u is completely 
(x, t f )  has full rank s, the igverse in Eq. (78) exists. T -  U 

X 
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:k - 
Since the cost V (x t 6x,b, T), T e [t2, tb] depends onu, let us make this 

dependence explicit by defining 
:k - J(G f 6x,'i;, U, 7) E v (x 4- Gx,'~;, T) (82) 

so that 

In a similar way to that demonstrated in Section 5, the following equations 

can be obtained, 

-J =Hx 
X 

.L 

-; xx = H  xx t f T J  x xx t J  xxx f 9 Jxx(tb) = 'iTix(tb) 

T - J u = p  H U = O  ; Ju(tb) = 

T -J = f J t (Hxu t Jxxfu)p ; Jxu(tb) = 0 xu x xu 

T 
-Juu = J  m u  f p t f  u p J  xu ; Juu(tb) = 

\ 

(84) I 
- -  

where all quantities in (84) a r e  evaluated at  x, u. 

integrated backwards from $ until t2 is reached. 

(78), and the expansion fo r  J (X t 6x,b, u, t2)  to second-order in  6x(t2) and 

u i s  

These equations can be 

At t2, u is given by Eq. 

J(G t 6x,b, U, t2) = J(G,b, 0, t2)  t <Jx, 6x> t <Ju, U> t <6x, Jxu+ 

t 2 1 <ax, Jxx6x) t $<u, JUuu> - 

Substituting into (84) the value of u, we obtain 
- -  J(X t S X , ~ ,  y6x, t2) = J(x, b, 0, t2) t <Jx, 6x) t <Jut y6x> t <6x, Jxuy6X> 

Renaming the left-hand side of (85) a s  ?(; t 6x,'E;, t2) we obtain 

-17- 



T T A 

J xx = J xx f Y J,,Y f Jx,Y + Y Jux 

and 
A 

Jx = Jx , since J 0- = 0 (8 7) 

Equations (86) and (87) a r e  the second and first partial  derivatives of the 

cost a t  t = t2, given that the terminal constraints (4) a r e  satisfied to 

first-order.  

From Section 5, the change in cost, owing to the presence of the 

rectangular pulse in the interval [ t l ,  t2] i s  

Thus the new necessary condition ofoptimality for singular problems with 

terminal constraints is 

T -  - A  

xx u 

As mentioned ear l ier ,  the control P ( T ) ( T .  only ensures that the terminal 

constraints are satisfied to f i rs t -order .  In the Appendix i t  i s  demonstrated 

that i f  the terminal constraints a r e  satisfied to second-order, conclusion 

(89) is unaffected. This is t rue also i f  the terminal constraints a r e  satisfied 

to higher-order, or satisfied exactly. 

9. Example 

Consider the following scalar  control problem: 

j ,  = u , x(0) = 1 

2 
2 V(1,O) = r x2dt - Sx (2) 

0 
J 

with the terminal constraint that 

x(2) = 0 

-18- 



and the control constraint 

I U I  1 . (94) 

In Section 6 i t  was demonstrated that, in  the absence of equality (93), and 

for S > 0, the following control program i s  a stationary, non-minimizing 

solution: 
1 

U(T) = -1 ; r E [ O , 1 ]  

u(7) = 0 ; 7 E (1,2] 

We shall demonstrate now that with equality (93) present, the new 

necessary condition (89) i s  satisfied (by inspection the control program 

(95) i s  optimal for all S ) .  

Since the singular a r c  extends from t = 1 to t = 2, we have t = t = 2 .  b f  

F o r  the above problem Eqs. (84) become 

-J = 2x 
X 

- J u =  0 

I -J = J xu xx 

Boundary conditions for  Eqs. (96) a r e  zero  at  t = 2, except fo r  

Jxx(2) = -s . 
From (96) and (97), we obtain the solutions 

JX(7) = 0 

JXx(7) = - S  t 27 

JU(7) = 0 

Jxu(r) = - S r  t T 
2 

2 2 3  Juu(r) = - S r  4-77 

(97) 

along the singular a r c .  
-19- 



In addition, 

-1 y = -r 

where 

r = 2 - t  , t a l  . 

and we have that 

T A A 2 
fu !HxU f JxXfu) = Jxx = 77 

( 9 9 )  

so that the new necessary condition is satisfied for  all T a 0, independent 

of S; this is the &sired result. 

1 0. Generalized Le gendre -Cleb sch Nece s sary Condition 

In [23], Kelley et a1 used a special control variation of the form 

shown in  Fig. 2 to derive the first generalization of the Legendre-Clebsch 

condition. They gave an  heuristic argument to demonstrate that, i f  the 

control problem i s  normal, then a control variation can be found such that 

the terminal constraints (4) a r e  met, at  least  to first-order, and the 

resulting change i n  cost owing to this added variation is negligible com- 

pared to that caused by the variation shown in  Fig. 2. 

Figure 2 
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If our rectangular pulse i s  replaced by Kelley's special variation, 

and i f  Eq. (68) is used to maintain the terminal equality (4) to first-order,  

then expansion of Eq. (21) yields - -  upon requiring a(tl) to be greater 

than o r  equal to zero - -  the f i r s t  generalization of the Legendre-Clebsch 

condition : 

The normality assumption of Kelley and Robbins is the same a s  our 

assumption of controllability of 

6k = f 6x 4- f 6u (1  03)  X U 

and the maximal rank of 

required to ensure the existence of the control variation 

P(T)o. (105) 

which maintains satisfaction of terminal constraints (4) to f i rs t -order .  

complete generalized Legendre-Clebsch condition can be derived by using 

Kelley Is generalized special variation. 

The 

11. Conclusion 

In this paper we have derived a new necessary condition of 

optimality for singular control problems. The control problem without 

terminal constraints was treated f i rs t .  With terminal constraints present, 

a special admissible control variation has to be constructed; this requires 

that the control problem be normal. t 

t Note that i f  the linearized system i s  completely controllable then condi- 
tion (89) applies equally well to the control problem without terminal 
constraints; that is, (89) must be true for  all matrices  $T of full rank. 

X 
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The Differential Dynamic Programming technique was used to obtain 

an expression for  the change in cost produced by the control variation. 

the singular a r c  to be minimizing it is necessary that this change in cost 

be non-negative; f rom this requirement the new necessary conditions 

were deduced. 

of the new conditions and the generalized Legendre-Clebsch condition. 

Finally, it was remarked that the generalized Legendre-Clebsch condition 

can be obtained by expanding Eq. (21)  and using Kelley's special variation 

followed by the variation Eq. (68) which maintains satisfaction of the 

terminal constraints, Eq. (4), to first-order.  

For  

Simple examples were used to i l lustrate the non-equivalence 

In some aerospace problems, stationary control functions have 

been determined which pass the generalized Legendre-Clebsch test, but 

whose optimality remains i n  doubt. 

optimality should prove useful in  ascertaining whether indeed these control 

functions a r e  extrema1 o r  not. 

The new necessary condition of 

Further,  i t  i s  hoped that a useful sufficiency condition of optimality 

*ill evolve from the type of arguments presented in  this paper, and that 

this wil l  lead to the development of numerical techniques for  solving 

singular optimal control problems. 
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Appendix 

A. 1. Satisfaction of Terminal Constraints to Second-Order 

Expansion of equality (4) to second-order in  6x(tf) about x(t ) yields f 

q (X, tf)6X t 'z 1 qXxG, Of)6X6X = 0 (A- 1 ) t 
X 

- -  
and the expansion of (1) to second-order in  6x and 6u, about x, u is 

6;r = fx6x t f 6u t f 6u6x t -f  1 6X6X ; 6x(t2) # 0 (A-2)$ 
U ux 2 xx 

The solution of (A-Z), correct  to second-order te rms  is  

(A-3) 

where 

and 

The quadratic te rms  on the r. h. s. of (A-3) contain Gx(t): for (A-3) to be 

correct  to second-order te rms ,  the following expression can be used for 

6x(t) in  the r 

6x( t 

h. S .  of (A-3): 

(A-6) 
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Substituting (A-6) into the r. h. s. of (A-3), we obtain 

t 
A 

t 
- A  

The form of ~ u ( T ) ,  based on satisfaction of the terminal constraints to 

first-order is, from (68), 

where cr i s  given by (78) as 

cr = y6x(t2) (A-9) 

so that cr is of f irst-order in  6x(t2). 

Let us assume now that ~ u ( T )  i s  of the form 

k ( T )  = p(T ) [ ( .  f a] (A- 1 0 )  

2 
where a i s  of order 6x (t2).  Then, to second-order in 6x(t2), 6x(tf) is: 
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(A-1 1)  

If (A-11) i s  now substituted into (A-1), then the f i rs t -order  te rms  in u 

vanish, because of (73) ,  leaving 

(A- 12) 2 ( T ) P ( T ) ~ T ] ~  f t e rms  of order  6x (t2) = 0 . 

The quantity in the square brackets on the 1. h. s. of (A-12) i s ,  from (76),  

(A-1 3 )  

which i s  invertible. 

6x (t2). 

So, from (A-12), a can be found and it is of order  
2 Thus a control variation of form 

GU(T) = P(T)[(T. 4- a] (A-14) 

where Q i s  f irst-order in 6x(t2) and a i s  second-order in 6x(t2) maintains 

the terminal equality (4) correct  to second-order terms.  

is substituted into (85), we find that, because a i s  second-order in  6x(t2), 

and Jr = 0, (86) and (87) do not contain a; thus the conclusion (89) is un- 

Now if (A-14) 

affected if we satisfy the terminal constraints to second-order rather 
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than to first-order.  

yields the same result. 

second-order t e rms  in an  expansion of the cost functional, i t  is only 

necessary $0 expand the Hamiltonian to  second-order t e rms  and the 

dynamic and terminal constraints to first-order te rms .  

Satisfaction of terminal constraints to higher -order 

This confirms that, in order  to include all 
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